Publication details.


Author(s):J. Sayol, L. Vásquez, J. Valencia, J. Linero-Cueto, D. García-García, I. Vigo, A. Orfila
Title:Extension and application of an observation-based local climate index aimed to anticipate the impact of El Niño–Southern Oscillation events on Colombia
Abstract:© 2022 Royal Meteorological SocietyThe Tumaco multivariate index (TMI) is a multidecadal monthly index constructed with unique time series of sea surface temperature, surface air temperature and rain measured at Tumaco bay, in the southern Pacific coast of Colombia, and available since 1961. In this work, this index is re-evaluated after the addition of in situ sea level data, and its properties for different standardization periods are compared against oceanic El Niño–Southern Oscillation (ENSO) and other derived indices. In particular, we propose a modified TMI, hereinafter referred as TMI4, whose potential to identify the expected sign and the amount of future variations of rain induced by ENSO events in Colombia is analysed for selected extreme episodes. Results indicate that after the inclusion of sea level data, TMI4 can anticipate the development of El Niño events before the ENSO 3 and some other sea surface temperature-based regional indices, although its predictability depends on the ENSO type (canonical or Modoki). The explanation is that sea level includes new information into TMI4 on the onset of El Niño events. In particular, the signal of intraseasonal sea level anomalies carried by downwelling Kelvin waves is detected at Tumaco tide-gauge. Moreover, the analysis of the differences, both in magnitude and spatial distribution, of rainfall anomalies induced by positive (El Niño) and negative (La Niña) ENSO events characterized by TMI4 are regionally presented. As a result, we find that TMI4 is especially suited for extensive northern and western areas of mainland Colombia. For completeness, in the appendix we briefly introduce the semi-automated implementation of TMI4, including a visual interface, which is currently being tested by personnel within the operational oceanography area at Centro de Investigaciones Oceanográficas e Hidrográficas del Pacífico (Dimar-CCCP).

Related staff

  • Alejandro Orfila Förster
  • Related departments

  • Oceanography and Global Change
  • Related research groups

  • Marine Technologies, Operational and Coastal Oceanography